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SUMMARY

Natural vision often involves recognizing objects
from partial information. Recognition of objects
from parts presents a significant challenge for the-
ories of vision because it requires spatial integration
and extrapolation from prior knowledge. Here we re-
corded intracranial field potentials of 113 visually se-
lective electrodes from epilepsy patients in response
to whole and partial objects. Responses along the
ventral visual stream, particularly the inferior occipi-
tal and fusiform gyri, remained selective despite
showing only 9%–25% of the object areas. However,
these visually selective signals emerged �100 ms
later for partial versus whole objects. These process-
ing delays were particularly pronounced in higher
visual areas within the ventral stream. This latency
difference persisted when controlling for changes in
contrast, signal amplitude, and the strength of selec-
tivity. These results argue against a purely feedfor-
ward explanation of recognition from partial informa-
tion, and provide spatiotemporal constraints on
theories of object recognition that involve recurrent
processing.

INTRODUCTION

During natural viewing conditions, we often have access to only

partial information about objects due to limited viewing angles,

poor luminosity, or occlusion. How the visual system can recog-

nize objects from limited information while still maintaining fine

discriminability between like objects remains poorly understood

and represents a significant challenge for computer vision algo-

rithms and theories of vision.

Visual shape recognition is orchestrated by a cascade of pro-

cessing steps along the ventral visual stream (Connor et al.,

2007; Logothetis and Sheinberg, 1996; Rolls, 1991; Tanaka,

1996). Neurons in the highest echelons of the macaque monkey
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ventral stream, the inferior temporal cortex (ITC), demonstrate

strong selectivity to complex objects (Ito et al., 1995; Miyashita

and Chang, 1988; Richmond et al., 1983; Rolls, 1991). In the

human brain, several areas within the occipital-temporal lobe

showing selective responses to complex shapes have been

identified using neuroimaging (Grill-Spector and Malach, 2004;

Haxby et al., 1991; Kanwisher et al., 1997; Taylor et al., 2007)

and invasive physiological recordings (Allison et al., 1999; Liu

et al., 2009; Privman et al., 2007). Converging evidence from

behavioral studies (Kirchner and Thorpe, 2006; Thorpe et al.,

1996), human scalp electroencephalography (Thorpe et al.,

1996), and monkey (Hung et al., 2005; Keysers et al., 2001; Op-

tican and Richmond, 1987) and human (Allison et al., 1999; Liu

et al., 2009) neurophysiological recordings have established

that selective responses to and rapid recognition of isolated

whole objects can occur within 100 ms of stimulus onset.

As a first-order approximation, the speed of visual processing

suggests that initial recognition may occur in a largely feedfor-

ward fashion, whereby neural activity progresses along the hier-

archical architecture of the ventral visual stream with minimal

contributions from feedback connections between areas or

within-area recurrent computations (Deco and Rolls, 2004; Fu-

kushima, 1980; Riesenhuber and Poggio, 1999).

Recordings in ITC of monkeys (Desimone et al., 1984; Hung

et al., 2005; Ito et al., 1995; Logothetis and Sheinberg, 1996)

and humans (Liu et al., 2009) have revealed a significant degree

of tolerance to object transformations. Visual recognition of iso-

lated objects under certain transformations such as scale or po-

sition changes does not incur additional processing time at the

behavioral or physiological level (Biederman and Cooper, 1991;

Desimone et al., 1984; Liu et al., 2009; Logothetis et al., 1995)

and can be described using purely bottom-up computational

models. While bottom-up models may provide a reasonable

approximation for rapid recognition of whole isolated objects,

top-down as well as horizontal projections abound throughout

visual cortex (Callaway, 2004; Felleman and Van Essen, 1991).

The contribution of these projections to the strong robustness

of object recognition to various transformations remains unclear.

In particular, recognition of objects from partial information is a

difficult problem for purely feedforward architectures and may

involve significant contributions from recurrent connections as
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Figure 1. Experimental Design and Behavioral Performance

(A) After 500ms fixation, an image containing a whole object or a partial object was presented for 150ms. Subjects categorized objects into one of five categories

(5-alternative forced choice) following a choice screen. Presentation order was pseudorandomized.

(B) Example images used in the task. Objects were either unaltered (whole) or presented through Gaussian bubbles (partial). For 12 subjects the background was

a gray screen (Main experiment) and for 6 subjects the background was phase-scrambled noise (Variant experiment). In this example, the object is seen through

five bubbles (18% of object area shown). The number of bubbles was titrated for each subject to achieve 80% performance. Stimuli consisted of 25 different

objects belonging to five categories (for more examples, see Figure S1).

(C) Above, percentage of the object visible (mean ± SD) for each subject in the Main experiment (left) and the contrast-normalized Variant (right). Below,

percentage of correct trials (performance) for whole (black) and partial (gray) objects.
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shown in attractor networks (Hopfield, 1982; O’Reilly et al., 2013)

or Bayesian inference models (Lee and Mumford, 2003).

Previous studies have examined the brain areas involved in

pattern completion with human neuroimaging (Lerner et al.,

2004; Schiltz and Rossion, 2006; Taylor et al., 2007), the selec-

tivity of physiological signals elicited by partial objects (Issa

and Dicarlo, 2012; Kovacs et al., 1995; Nielsen et al., 2006; Ru-

tishauser et al., 2011), and behavioral delays when recognizing

occluded or partial objects (Biederman, 1987; Brown and

Koch, 2000; Johnson and Olshausen, 2005). Several studies

have focused on ‘‘amodal completion,’’ i.e., the linking of discon-

nected parts to a single ‘‘gestalt,’’ using geometric shapes or line

drawings and strong occluders that provided depth cues (Brown

and Koch, 2000; Chen et al., 2010; Johnson and Olshausen,

2005; Murray et al., 2001; Nakayama et al., 1995; Sehatpour

et al., 2008). In addition to determining that different parts belong

to a whole, the brain has to jointly process the parts to recognize

the object (Gosselin and Schyns, 2001; Nielsen et al., 2006; Ru-

tishauser et al., 2011), which we study here.

We investigated the spatiotemporal dynamics underlying

object completion by recording field potentials from intracranial

electrodes implanted in epilepsy patients while subjects recog-

nized objects from partial information. Even with very few fea-

tures present (9%–25% of object area shown), neural responses

in the ventral visual stream retained object selectivity. These

visually selective responses to partial objects emerged about

100 ms later than responses to whole objects. The processing

delays associated with interpreting objects from partial informa-

tion increased along the visual hierarchy. These delays stand in

contrast to position and scale transformations. Together, these

results argue against a feedforward explanation for recognition
of partial objects and provide evidence for the involvement of

highest visual areas in recurrent computations orchestrating

pattern completion.

RESULTS

We recorded intracranial field potentials (IFPs) from 1,699 elec-

trodes in 18 subjects (11 male, 17 right handed, 8–40 years old)

implanted with subdural electrodes to localize epileptic seizure

foci. Subjects viewed images containing grayscale objects pre-

sented for 150ms. After a 650ms delay period, subjects reported

the object category (animals, chairs, human faces, fruits, or vehi-

cles) by pressing corresponding buttons on a gamepad (Fig-

ure 1A). In 30% of the trials, the objects were unaltered (referred

to as the ‘‘Whole’’ condition). In 70% of the trials, partial object

features were presented through randomly distributed Gaussian

‘‘bubbles’’ (Figure 1B, Experimental Procedures, referred to as

the ‘‘Partial’’ condition) (Gosselin andSchyns, 2001). The number

of bubbles was calibrated at the start of the experiment such

that performance was �80% correct. The number of bubbles

(but not their location) was then kept constant throughout the

rest of the experiment. For 12 subjects, the objects were pre-

sented on a gray background (the ‘‘Main’’ experiment). While

contrast was normalized across whole objects, whole objects

and partial objects had different contrast levels because of the

gray background. In six additional subjects, a modified experi-

ment (the ‘‘Variant’’ experiment) was performed where contrast

was normalized betweenwhole and partial objects by presenting

objects on a background of phase-scrambled noise (Figure 1B).

The performance of all subjects was around the target correct

rate (Figure 1C, 79% ± 7%, mean ± SD). Performance was
Neuron 83, 736–748, August 6, 2014 ª2014 Elsevier Inc. 737



Figure 2. Example Physiological Responses from Main Experiment

Example responses from an electrode in the left fusiform gyrus.

(A) Intracranial field potential (IFP) responses to an individual exemplar object. For the Whole condition, the average response (green) and single trial traces (gray)

are shown. For the Partial condition, example single trial responses (green, n = 1) to different partial images of the same exemplar (top row) are shown. The

response peak time is marked on the x axis. The dashed line indicates the stimulus onset time, and the black bar indicates stimulus presentation duration

(150 ms).

(B) Raster of the neural responses for whole (left, 52 trials) and partial (right, 395 trials) objects for the category that elicited the strongest responses (human faces).

Rows represent individual trials. Dashed lines separate responses to the five face exemplars. The color indicates the IFP at each time point (bin size = 2 ms, see

scale on top).

(C) Average IFP response to whole (left) and partial (right) objects belonging to five different categories (animals, chairs, human faces, fruits, and vehicles, see

color map on top). Shaded areas around each line indicate SEM. The gray rectangle denotes the image presentation time (150 ms). The total number of trials is

indicated on the bottom right of each subplot.

(D) Selectivity was measured by computing the F-statistic at each time point for whole (black) and partial (gray) objects. Arrows indicate the first time point when

the F-statistic was greater than the statistical threshold (black dashed line) for 25 consecutive milliseconds.

(E) Decoding performance (mean ± SD) using a linear multiclass discriminant algorithm in classifying trials into one of five categories. Arrows indicate the first time

when decoding performance reached the threshold for statistical significance (black dashed line). Chance is 20% (blue dashed line).

(F) Distribution of the visual response latency across trials for whole (black) and partial (gray) objects, based on when the IFP in individual trials was significantly

above baseline activity. The distribution is based on kernel density estimate (bin size = 6 ms). The arrows denote the distribution averages.
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significantly above chance (Main experiment: chance = 20%,

5-alternative forced choice; Variant experiment: chance =

33%, 3-alternative forced choice) even when only 9%–25% of

the object was visible. As expected, performance for the Whole

condition was near ceiling (95%± 5%,mean ± SD). The analyses

in this manuscript were performed on correct trials only.

Object Selectivity Was Retained despite Presenting
Partial Information
Consistent with previous studies, multiple electrodes showed

strong visually selective responses to whole objects (Allison
738 Neuron 83, 736–748, August 6, 2014 ª2014 Elsevier Inc.
et al., 1999; Davidesco et al., 2013; Liu et al., 2009). An example

electrode from the Main experiment, located in the fusiform

gyrus, had robust responses to several exemplars in the Whole

condition, such as the one illustrated in the first panel of Fig-

ure 2A. These responses could also be observed in individual

trials of face exemplars (gray traces in Figures 2A and 2B, left).

This electrode was preferentially activated in response to faces

compared to the other objects (Figure 2C, left). Responses to

stimuli other than human faces were also observed, such as

the responses to several animal (red) and fruit (orange) exem-

plars (Figure S1B available online).
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Figure 3. Second Example of Physiological Responses from Variant Experiment

Example responses from an electrode in the left inferior temporal gyrus. The format and conventions are as in Figure 2, except that only three categories were

tested, and the Partial Fixed condition was added in (A) and (B) (Experimental Procedures). Note that the statistical thresholds for the F-statistic and decoding

performance differ from those in Figure 2 because of the different number of categories. More examples are shown in Figures S2 and S3.
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The responses in this example electrode were preserved in

the Partial condition, where only 11% ± 4% (mean ± SD) of the

object was visible. Robust responses to partial objects were

observed in single trials (Figures 2A and 2B, right). These re-

sponses were similar even when largely disjoint sets of features

were presented (e.g., compare Figure 2A, third and fourth im-

ages). Because the bubble locations varied from trial to trial,

there was significant variability in the latency of the visual

response (Figure 2B, right); this variability affected the average

responses to each category of partial objects (Figure 2C, right).

Despite this variability, the electrode remained selective and

kept the stimulus preferences at the category and exemplar level

(Figures 2C and S1B).

The responses of an example electrode from the Variant

experiment support similar conclusions (Figure 3). Even though

only 21% ± 4% (mean ± SD) of the object was visible, there

were robust responses in single trials (Figures 3A and 3B), and

strong selectivity both for whole objects and partial objects at

the category and exemplar level (Figures 3C and S1C). While

the selectivity was consistent across single trials, there was

significantly more trial-to-trial variation in the timing of the re-

sponses to partial objects compared towhole objects (Figure 3B,

top right).
To measure the strength of selectivity, we employed two

approaches. The first approach (‘‘ANOVA’’) was a nonparametric

one-way analysis of variance test to evaluate whether and when

the average category responses differed significantly. An elec-

trode was denoted ‘‘selective’’ if, during 25 consecutive millisec-

onds, the ratio of variances across versus within categories

(F-statistic) was greater than a significance threshold deter-

mined by a bootstrapping procedure to ensure a false discovery

rate of q < 0.001 (F = 5.7) (Figures 2D and 3D). Similar results

were obtained when considering d0 as a measure of selectivity

(Experimental Procedures). The ANOVA test evaluates whether

the responses are statistically different when averaged across

trials, but the brain needs to discriminate among objects in single

trials. To evaluate the degree of selectivity in single trials, we em-

ployed a statistical learning approach to measure when informa-

tion in the neural response became available to correctly classify

the object into one of the five categories (denoted ‘‘Decoding’’;

Figure 2E, chance = 20%; Figure 3E, chance = 33%). An elec-

trode was considered selective if the decoding performance

exceeded a threshold determined to ensure q < 0.001 (Experi-

mental Procedures).

Of the 1,699 electrodes, 210 electrodes (12%) and 163 elec-

trodes (10%) were selective during the Whole condition in the
Neuron 83, 736–748, August 6, 2014 ª2014 Elsevier Inc. 739



Table 1. Number of Selective Electrodes

Experiment Frequency Band Whole Shuffled Both Shuffled Figures

Main broadband 83 (1.66 ± 0.07) 22 (0.06 ± 0.01) Figures 4, 5A–5E, and 6

Variant broadband 30 (1.12 ± 0.12) 8 (0.04 ± 0.03) Figures 4E, 4F, 5A–5C, and 6

Main gamma 53 (1.56 ± 0.05) 14 (0.04 ± 0.01) Figures 5F and 6D

For the experiment and frequency bands reported in themain text, this table shows the number of electrodes selective to whole images (‘‘Whole’’) or to

both whole and partial images (‘‘Both’’). Also reported is the average number of selective electrodes found when the object category labels were shuf-

fled (mean ± SEM, n = 1,000 iterations).
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ANOVA and Decoding tests, respectively. We focused subse-

quent analyses only on the 113 electrodes selective in both tests

(83 from the Main experiment and 30 from the Variant experi-

ment; Table 1). As a control, shuffling the object labels yielded

only 2.78 ± 0.14 selective electrodes (mean ± SEM, 1,000

iterations; 0.16% of the total). Similar to previous reports, the

preferred category of different electrodes spanned all five object

categories, and the electrode locations were primarily distrib-

uted along the ventral visual stream (Figures 4E and 4F) (Liu

et al., 2009). As demonstrated for the examples in Figures 2

and 3, 30 electrodes (24%) remained visually selective in the

Partial condition (Main experiment: 22; Variant experiment: 8),

whereas the shuffling control yielded an average of 0.06 and

0.04 selective electrodes in the Main and Variant experiments,

respectively (Table 1).

The examples in Figures 2C and 3C seem to suggest that the

response amplitudes were larger in theWhole condition. Howev-

er, this effect was due to averaging over trials and the increased

trial-to-trial variability in the response latency for the Partial

condition. No amplitude changes are apparent in the single trial

data (Figures 2B and 3B). The range of the IFP responses to the

preferred category from 50 to 500 ms was not significantly

different for whole versus partial objects (Figure 4A, p = 0.68,

Wilcoxon rank-sum test). However, the strength of category

selectivity was suppressed in the Partial condition. The median

F-statistic was 23 for the Whole condition and 14 for the Partial

condition (Figure 4B, p < 10�4, Wilcoxon signed-rank test, an

F-statistic value of 1 indicates no selectivity). Themedian decod-

ing performance was 33% for the Whole condition and 26% for

the Partial condition (Figure 4C, p < 10�4, Wilcoxon signed-rank

test). Because the Variant experiment contained only three cat-

egories, measures of selectivity such as the F-statistic or decod-

ing performance are scaled differently from theMain experiment,

so Figures 4A–4D only show data from the Main experiment.

Analysis of the electrodes in the Variant experiment revealed

similar conclusions.

The observation that even nonoverlapping sets of features

can elicit robust responses (e.g., third and fourth panel in Fig-

ure 2A) suggests that the electrodes tolerated significant trial-

to-trial variability in the visible object fragments. To quantify

this observation across the population, we defined the percent-

age of overlap between two partial images of the same object by

computing the number of pixels shared by the image pair

divided by the object area (Figure 4D, insert). We considered

partial images where the response to the preferred category

was highly discriminable from the response to the nonpreferred

categories (Experimental Procedures). Even for these trials with
740 Neuron 83, 736–748, August 6, 2014 ª2014 Elsevier Inc.
robust responses, 45% of the 10,438 image pairs had less

than 5% overlap, and 11% of the pairs had less than 1% overlap

(Figure 4D). Furthermore, in every electrode, there existed pairs

of robust responses where the partial images had <1% overlap.

To compare different brain regions, we measured the percent-

age of electrodes in each gyrus that were selective in either the

Whole condition or in both conditions (Figures 4E and 4F).

Consistent with previous reports, electrodes along the ventral

visual stream were selective in the Whole condition (Figure 4F,

black bars) (Allison et al., 1999; Davidesco et al., 2013; Liu

et al., 2009). The locations with the highest percentages of elec-

trodes selective to partial objects were primarily in higher visual

areas, such as the fusiform gyrus and inferior occipital gyrus (Fig-

ure 4F, gray bars, p = 2 3 10�6 and 5 3 10�4, respectively,

Fisher’s exact test). In sum, electrodes in the highest visual areas

in the human ventral stream retained visual selectivity to partial

objects, their responses could be driven by disjoint sets of object

parts, and the response amplitude but not the degree of selec-

tivity was similar to that of whole objects.

Delayed Responses to Partial Objects
In addition to the changes in selectivity described above, the

responses to partial objects were delayed compared to the cor-

responding responses to whole objects (e.g., compare Whole

versus Partial in the single trial responses in Figures 2A, 2B,

3A, and 3B). To compare the latencies of responses to whole

and partial objects, we measured both selectivity latency and

visual response latency. Selectivity latency indicates when

sufficient information becomes available to distinguish among

different objects or object categories, whereas the response la-

tency denotes when the visual response differs from baseline

(Experimental Procedures).

Quantitative estimates of latency are difficult because they

depend on multiple variables, including number of trials,

response amplitudes, and thresholds. Here we independently

applied different measures of latency to the same data set. The

selectivity latency in the responses to whole objects for the

electrode shown in Figure 2 was 100 ± 8 ms (mean ± 99% CI)

based on the first time point when the F-statistic crossed the

statistical significance threshold (Figure 2D, black arrow). The

selectivity latency for the partial objects was 320 ± 6 ms

(mean ± 99% CI), a delay of 220 ms. A comparable delay of

180 ms between Partial and Whole conditions was obtained

using the single trial decoding analyses (Figure 2E). Similar delays

were apparent for the example electrode in Figure 3.

We considered all electrodes in the Main experiment that

showed selective responses to both whole objects and partial



Figure 4. Neural Responses Remained Visually Selective despite Partial Information

(A) Average IFP amplitude A= ð1=NÞPi =N
i = 1maxðIFPiðtÞÞ �minðIFPiðtÞÞ across trials (N) in response to partial versus whole objects for electrodes that were visually

selective in the Whole condition (blue, n = 61 + 22), and electrodes that were visually selective in both Whole and Partial conditions (gray, n = 22) (Main

experiment). Most of the data clustered around the diagonal (dashed line). Inset, distribution of suppression index: ðAwhole � ApartialÞ=Awhole. Error bars represent

99% confidence interval on the estimate of the mean.

(B) Comparison between selectivity for partial versuswhole objectsmeasured by the F-statistic. Most of the data were below the diagonal (dashed line). The arrow

points to the example from Figure 2. Here we only show data from theMain experiment (F values are hard to compare across experiments because of the different

number of categories; hence, the example from Figure 3 is not in this plot).

(C) Comparison between selectivity for partial versus whole objects measured by the single trial decoding performance (Experimental Procedures). Most of the

data are below the diagonal (dashed line). Chance performance is 20%.

(D) For all pairs of discriminable trials (n = 10,438 pairs from 22 selective electrodes), we computed the distribution of the percent overlap in shared pixels. The

percent overlap between two pairs of trials (inset, red and blue bubbles) was defined as the number of shared pixels (black) divided by the total object area (area

inside gray outline).

(E) Locations of electrodes that showed visual selectivity in both Whole and Partial conditions. Electrodes were mapped to the same reference brain. Example

electrodes from Figures 2 and 3 are marked by arrows. Colors indicate different brain gyri.

(F) Percent of total electrodes in each region that were selective in either the Whole condition (black) or in both conditions (gray). Color in the location name

corresponds to the brain map in (E). The number of selective electrodes is shown next to each bar. Only regions with at least one electrode selective in both

conditions are shown.
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objects (n = 22). For the responses to whole objects, the me-

dian latency across these electrodes was 155 ms, which is

consistent with previous estimates (Allison et al., 1999; Liu

et al., 2009). The responses to partial objects showed a signif-

icant delay in the selectivity latency as measured using ANOVA

(median latency difference between Partial and Whole condi-

tions = 117 ms, Figure 5A, black dots, p < 10�5) or Decoding

(median difference = 158 ms, Figure 5B, black dots, p <

10�5). Similar effects were observed when considering two-

class selectivity metrics such as d0 (Figures S4A and S4B).

We examined several potential factors that might correlate

with the observed latency differences. Stimulus contrast is

known to cause significant changes in response magnitude

and latency across the visual system (e.g., Reich et al., 2001;
Shapley and Victor, 1978). As noted above, there was no signif-

icant difference in the response magnitudes between Whole

and Partial conditions (Figure 4A). Furthermore, in the Variant

experiment, where all the images had the same contrast, we

still observed latency differences between conditions (median

difference = 73 ms [ANOVA], Figure 5A; and median difference =

93 ms [Decoding], Figure 5B, gray circles).

Because the spatial distribution of bubbles varied from trial to

trial, each image in the Partial condition revealed different visual

features. As a consequence, the response waveform changed

from trial to trial in the Partial condition (e.g., compare the strik-

ingly small trial-to-trial variability in the responses to whole ob-

jects with the considerable variability in the responses to partial

objects, Figure 3B). Yet, the latency differences between Whole
Neuron 83, 736–748, August 6, 2014 ª2014 Elsevier Inc. 741



Figure 5. Increased Latency for Object Completion

We considered several definitions of latency (see text).

(A) Latency of selective responses, as measured through ANOVA (e.g., Figure 2D) for electrodes selective in both Whole and Partial conditions from the Main

(black, n = 22) and Variant (gray, n = 8) experiments. The latency distributions were significantly different (Wilcoxon signed-rank test, Main experiment: p < 10�5;

Variant experiment: p = 0.02). Error bars represent 99% confidence interval on the estimate of the mean.

(B) Latency as measured by the machine learning decoding analysis (e.g., Figure 2E). These latency distributions were significantly different (Wilcoxon signed-

rank test, Main experiment: p < 10�5; Variant experiment: p = 0.004).

(C) Distribution of visual response latencies in single trials for whole (black) and partial (gray) objects (as illustrated in Figure 2F). These distributions were

significantly different (Wilcoxon rank-sum test, p < 10�15). The vertical dashed lines denote the means of each distribution.

(D) There was no significant correlation between selectivity latency (measured using ANOVA) and IFP amplitude (defined in Figure 4A) (Whole: r = 0.13, p = 0.29;

Partial: r = 0.15, p = 0.27).

(E) The correlation between selectivity latency and the selectivity as evaluated by the F-statistic was significant in the Partial condition (r =�0.43, p = 0.03), but not

in the Whole condition (r =�0.36, p = 0.06). However, the latency difference between conditions was still significant when accounting for changes in the strength

of selectivity (analysis of covariance [ANCOVA], p < 10�8), as can be observed by comparing latencies in subpopulations of matched selectivity.

(F) Latency of selective responses from electrodes using power in the 70–100 Hz (gamma, blue) frequency bands. Statistical significance measured with the

Wilcoxon signed-rank test (p < 10�5).
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and Partial conditions were apparent even in single trials (e.g.,

Figures 2A and 3A). These response latencies depended on

the sets of features revealed in each trial. In a subset of trials

where we presented repetitions of partial objects with one fixed

position of bubbles (the ‘‘Partial Fixed’’ condition), the IFP timing

was more consistent across trials (Figure 3C, right bottom), but

the latencies were still longer for partial objects than for whole

objects.

To further investigate the role of stimulus heterogeneity, we

measured the response latency in each trial by determining

when the IFP amplitude exceeded a threshold set as three SDs

above the baseline activity (Figures 2F and 3F). The average

response latencies in the Whole and Partial conditions for the

preferred category for the first example electrode were 172 and

264 ms, respectively (Figure 2F, Wilcoxon rank-sum test, p <

10�6). The distribution of response latencies in the Whole condi-

tion was highly peaked (Figures 2F and 3F), whereas the distribu-
742 Neuron 83, 736–748, August 6, 2014 ª2014 Elsevier Inc.
tion of latencies in the Partial condition showed a larger variation,

driven by the distinct visual features revealed in each trial. This ef-

fect was not observed in all the electrodes; some electrodes

showed consistent, albeit delayed, latencies across trials in the

Partial condition (Figure S3). Across the population, delays

were observed in the visual response latencies (Figure 5C, Wil-

coxon rank-sum test, p < 10�15), even when the latencies were

measured with only the most selective responses (Figure S6).

We askedwhether the observed delays could be related to dif-

ferences in the IFP response strength or the degree of selectivity

by conducting an analysis of covariance (ANCOVA). The latency

difference between conditions was significant even when

accounting for differences in IFP amplitude (p < 10�9) or strength

of selectivity (p < 10�8). Additionally, subpopulations of elec-

trodes with matched amplitude or matched selectivity still

showed significant differences in the selectivity latency (Figures

5D and 5E).



Figure 6. Summary of Latency Measurements

(A) Brain map of electrodes selective in both conditions, colored by the difference in the response latency (Partial–Whole; see color scale on the bottom).

(B) Comparison of response latency differences (Partial–Whole) between electrodes in occipital lobe (early visual) and temporal lobe (late visual). Error bars

represent SEM.

(C) Decoding performance from pseudopopulation of 60 electrodes for categorization (thick lines) or exemplar identification (dotted lines) for Whole (black) or

Partial (gray) conditions (Experimental Procedures). Horizontal lines indicate chance for categorization (20%) and identification (4%). Error bars represent SD. The

60 electrodes used in this analysis were selected using their rank order based on their individual decoding performance on training data.

(D) Summary of latency difference between Partial and Whole conditions for multiple definitions of latency (parentheses mark the figure source). Positive values

mean increased latency in the Partial condition. Box plots represent themedian and quartile across the selective electrodes. For the Variant experiment, individual

electrodes are plotted since the total number of electrodes n is small. For the population decoding results, the n denotes the number of repetitions using

60 electrodes.
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Even though the average amplitudes were similar for whole

and partial objects (Figure 4A), the variety of partial images could

include a wider distribution with weak stimuli that failed to

elicit a response. To further investigate whether such potential

weaker responses could contribute to the latency differences,

we performed two additional analyses. First, we subsampled

the trials containing partial images to match the response ampli-

tude distribution of the whole objects for each category. Sec-

ond, we identified those trials where the decoder was correct

at 500 ms and evaluated the decoding dynamics before

500 ms under these matched performance conditions. The

selectivity latency differences between partial and whole objects

remained when matching the amplitude distribution or the de-

coding performance (p < 10�5, Figure S4C and S4D; p < 10�7,

Figures S4E–S4G).

Differences in eye movements between Whole and Partial

conditions could potentially contribute to latency delays. We

minimized the impact of eye movements by using a small

stimulus size (5�), fast presentation (150 ms), and trial order

randomization. Furthermore, we recorded eyemovements along

with the neural responses in two subjects. There were no clear

differences in eyemovements betweenwhole and partial objects

in these two subjects (Figure S5), and those subjects contributed

5 of the 22 selective electrodes in the Main experiment. To
further characterize the eye movements that subjects typically

make under these experimental conditions, we also recorded

eye movements from 20 healthy volunteers and found no

difference in the statistics of saccades and fixation between

Whole and Partial conditions (Figure S5; note that these are

not the same subjects who participated in the physiological

experiments).

Several studies have documented visual selectivity in different

frequency bands of the IFP responses including broadband and

gamma band signals (Davidesco et al., 2013; Liu et al., 2009; Vi-

dal et al., 2010).We also observed visually selective responses in

the 70�100 Hz gamma band (e.g., Figure S2). Delays during the

Partial condition documented above for the broadband signals

were also observed when measuring the selectivity latency in

the 70–100 Hz frequency band (median latency difference =

157 ms, n = 14 electrodes, Figure 5F).

To compare delays across different brain regions and different

subjects, we mapped each electrode onto the same reference

brain. Delays in the response latency between Partial and Whole

conditions had a distinct spatial distribution: most of the delays

occurred in higher visual areas such as the fusiform gyrus and

inferior temporal gyrus (Figure 6A). There was a significant corre-

lation between the latency difference and the electrode position

along the anterior-posterior axis of the temporal lobe
Neuron 83, 736–748, August 6, 2014 ª2014 Elsevier Inc. 743
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(Spearman’s correlation = 0.43, permutation test, p = 0.02). In

addition, the latency difference was smaller for electrodes in

early visual areas (occipital cortex) versus late visual areas (tem-

poral lobe), as shown in Figure 6B (p = 0.02, t test). For the two

gyri where we had n > 5 electrodes selective in both conditions,

delays were more prominent in the fusiform gyrus than the infe-

rior occipital gyrus (p = 0.01, t test).

The analyses presented thus far only measured selectivity

latency for individual electrodes, but the subject has access to

activity across many regions. To estimate the selectivity latency

from activity across different regions, we combined information

from multiple electrodes and across subjects by constructing

pseudopopulations (Hung et al., 2005). For each trial, electrode

responses were randomly sampled without replacement from

stimulus-matched trials (same exemplar and condition) and

then concatenated to produce one response vector for each

pseudopopulation trial (Experimental Procedures). This proce-

dure involves several assumptions including independence

and ignores potentially important correlations between elec-

trodes within a trial (Meyers and Kreiman, 2011). Electrodes

were rank-ordered based on their individual decoding perfor-

mance, and varying population sizes were examined. Decoding

performance using electrode ensembles was both fast and

accurate (Figure 6C). Category information emerged within

150 ms for whole objects (black thick line) and 260 ms for partial

objects (gray thick line), and reached 80% and 45% correct rate,

respectively (chance = 20%). Even for the more difficult problem

of identifying the stimulus exemplar (chance = 4%), decoding

performance emerged within 135 ms for whole objects (black

dotted line) and 273 ms for partial objects (gray dotted line).

Exemplar decoding accuracy reached 61% for whole objects

and 14% for partial objects. These results suggest that, within

the sampling limits of our techniques, electrode ensembles

also show delayed selectivity for partial objects.

In sum, we have independently applied several different esti-

mates of latency that use statistical (ANOVA), machine learning

(decoding), or threshold (response latency) techniques. These

latency measures were estimated using information derived

from both broadband signals and specific frequency bands, us-

ing individual electrodes as well as electrode ensembles, taking

into account changes in contrast, signal strength, and degree of

selectivity. Each definition of latency requires different assump-

tions and emphasizes different aspects of the response, leading

to variations in the absolute values of the latency estimates. Yet,

independently of the specific definition, the latencies for partial

objects were consistently delayed with respect to the latencies

to whole objects (the multiple analyses are summarized in Fig-

ure 6D, see also Figure S6).

DISCUSSION

The visual system must maintain visual selectivity while remain-

ing tolerant to a myriad of object transformations. This study

shows that neural activity in the human occipitotemporal cortex

remained visually selective (e.g., Figure 2) even when limited par-

tial information about each object was presented (on average,

only 18% of each object was visible). Despite the trial-to-trial

variation in the features presented, the field potential response
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waveform, amplitude, and object preferences were similar

between the Whole and Partial conditions (Figures 2–4). How-

ever, the neural responses to partial objects required �100 ms

of additional processing time compared to whole objects (Fig-

ures 5 and 6). While the exact value of this delay may depend

on stimulus parameters and task conditions, the requirement

for additional computation was robust to different definitions of

latencies including single trial analyses, different frequency

bands, and different statistical comparisons (Figure 6D) and per-

sisted when accounting for changes in image contrast, signal

strength, and the strength of selectivity (Figure 5). This additional

processing time was more pronounced in higher areas of the

temporal lobe, including ITC and the fusiform gyrus, than in

earlier visual areas (Figure 6A).

Previous human neuroimaging, scalp electroencephalog-

raphy, and IFP recordings have characterized object completion

by comparing responses to occluded objects with feature-

matched scrambled counterparts (Lerner et al., 2004; Sehatpour

et al., 2008) or by comparing responses to object parts and

wholes (Schiltz and Rossion, 2006; Taylor et al., 2007). Taking

a different approach, neurophysiological recordings in the ma-

caque ITC have examined how robust shape selectivity or en-

coding of diagnostic features are to partial occlusion (Issa and

Dicarlo, 2012; Kovacs et al., 1995; Missal et al., 1997; Nielsen

et al., 2006). Comparisons across species (monkeys versus

humans) or across different techniques (IFP recordings versus

fMRI) have to be interpreted with caution. However, the locations

where we observed selective responses to partial objects,

particularly ITC and fusiform gyrus (Figures 4E and 4F), are

consistent with and provide a link betweenmacaque neurophys-

iological recordings of selective responses and human neuroi-

maging of the signatures of object completion.

Presentation of whole objects elicits rapid responses that

show initial selectivity within 100–200 ms after stimulus onset

(Hung et al., 2005; Keysers et al., 2001; Liu et al., 2009; Optican

and Richmond, 1987; Thorpe et al., 1996). The speed of the initial

selective responses is consistent with a largely bottom-up

cascade of processes leading to recognition (Deco and Rolls,

2004; Fukushima, 1980; Riesenhuber and Poggio, 1999; Rolls,

1991). For partial objects, however, visually selective responses

were significantly delayed with respect to whole objects (Figures

5 and 6). These physiological delays are inconsistent with a

purely bottom-up signal cascade, and stand in contrast to other

transformations (scale, position, rotation) that do not induce

additional neurophysiological delays (Desimone et al., 1984; Ito

et al., 1995; Liu et al., 2009; Logothetis et al., 1995; Logothetis

and Sheinberg, 1996).

Delays in response timing have been used as an indicator for

recurrent computations and/or top-downmodulation (Buschman

and Miller, 2007; Keysers et al., 2001; Lamme and Roelfsema,

2000; Schmolesky et al., 1998). In line with these arguments,

we speculate that the additional processing time implied by the

delayed physiological responses can be ascribed to recurrent

computations that rely on prior knowledge about the objects to

be recognized (Ahissar and Hochstein, 2004). Horizontal and

top-down projections throughout visual cortex could instantiate

such recurrent computations (Callaway, 2004; Felleman and

Van Essen, 1991). Several areas where such top-down and
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horizontal connections are prevalent showed selective re-

sponses to partial objects (Figures 4E and 4F).

It is unlikely that these delays were due to the selective signals

topartial objectspropagatingat a slowerspeed through thevisual

hierarchy in a purely feedforward fashion. Selective electrodes in

earlier visual areasdid not have a significant delay in the response

latency,whicharguesagainst latencydifferencesbeinggoverned

purely by low-level phenomena. Delays in the response latency

were larger in higher visual areas, suggesting that top-down

and/or horizontal signals within those areas of the temporal lobe

are important for pattern completion (Figure 6A). Additionally,

feedback is known to influence responses in visual areas within

100–200msafter stimulusonset, asevidenced in studiesof atten-

tional modulation that involve top-down projections (Davidesco

et al., 2013; Lamme and Roelfsema, 2000; Reynolds and Che-

lazzi, 2004). Those studies report onset latencies of feedback

effects similar to the delays observed here in the same visual

areasalong the ventral stream.Cognitive effects on scalp electro-

encephalogram (EEG) responses that presumably involve feed-

back processing have also been reported at similar latencies

(Schyns et al., 2007). The differences reported here between

approximately early and high parts of the ventral visual stream

are reminiscent of neuroimaging results that compare part and

whole responses along the ventral visual stream (Schiltz andRos-

sion, 2006; Taylor et al., 2007).

The selective responses to partial objects were not exclusively

driven by a single object patch (Figures 2A, 2B, 3A, and 3B).

Rather, they were tolerant to a broad set of partial feature com-

binations. While our analysis does not explicitly rule out common

features shared by different images with largely nonoverlapping

pixels, the large fraction of trials with images with low overlap

that elicited robust and selective responses makes this explana-

tion unlikely (Figure 4D). The response latencies to partial objects

were dependent on the features revealed: when we fixed the

location of the bubbles, the response timing was consistent

from trial to trial (Figure 3C).

The distinction between purely bottom-up processing and

recurrent computations confirms predictions from computa-

tional models of visual recognition and attractor networks.

Whereas recognition of whole objects has been successfully

modeled by purely bottom-up architectures (Deco and Rolls,

2004; Fukushima, 1980; Riesenhuber and Poggio, 1999), those

models struggle to identify objects with only partial information

(Johnson and Olshausen, 2005; O’Reilly et al., 2013). Instead,

computational models that are successful at pattern completion

involve recurrent connections (Hopfield, 1982; Lee and Mum-

ford, 2003; O’Reilly et al., 2013). Different computational models

of visual recognition that incorporate recurrent computations

include connections within the ventral stream (e.g., from ITC to

V4) and/or fromprefrontal areas to the ventral stream. Our results

implicate higher visual areas (Figures 4E and 6A) as participants

in the recurrent processing network involved in recognizing

objects from partial information. Additionally, the object-depen-

dent and unimodal distribution of response latencies to partial

objects (e.g., Figure 2F) suggest models that involve graded

evidence accumulation as opposed to a binary switch.

The current observations highlight the need for dynamical

models of recognition to describe where, when, and how recur-
rent processing interacts with feedforward signals. Our findings

provide spatial and temporal bounds to constrain these models.

Such models should achieve recognition of objects from partial

information within 200–300 ms, demonstrate delays in the visual

response that are feature dependent, and include a graded

involvement of recurrent processing in higher visual areas.

We speculate that the proposed recurrent mechanisms may be

employed not only in the context of object fragments but

also in visual recognition for other types of transformations that

impoverish the image or increase task difficulty. The behavioral

and physiological observations presented here suggest that

the involvement of recurrent computations during object

completion, involving horizontal and top-down connections,

result in a representation of visual information in the highest ech-

elons of the ventral visual stream that is selective and robust to a

broad range of possible transformations.

EXPERIMENTAL PROCEDURES

Physiology Subjects

Subjects were 18 patients (11 male, 17 right handed, 8–40 years old, Table

S1) with pharmacologically intractable epilepsy treated at Children’s Hospital

Boston (CHB), Brigham and Women’s Hospital (BWH), or Johns Hopkins

Medical Institution (JHMI). They were implanted with intracranial electrodes

to localize seizure foci for potential surgical resection. All studies described

here were approved by each hospital’s institutional review boards and

were carried out with the subjects’ informed consent. Electrode locations

were driven by clinical considerations; the majority of the electrodes were

not in the visual cortex.

Recordings

Subjects were implanted with 2-mm-diameter intracranial subdural electrodes

(Ad-Tech, Racine, WI, USA) that were arranged into grids or strips with 1 cm

separation. Each subject had between 44 and 144 electrodes (94 ± 25,

mean ± SD), for a total of 1,699 electrodes. The signal from each electrode

was amplified and filtered between 0.1 and 100 Hz with sampling rates ranging

from 256 Hz to 1,000 Hz at CHB (XLTEK, Oakville, ON, Canada), BWH (Bio-

Logic, Knoxville, TN, USA), and JHMI (Natus, San Carlos, CA and Nihon Koh-

den, Tokyo, Japan). A notch filter was applied at 60 Hz. All the data were

collected during periods without any seizure events. In two subjects, eye

positions were recorded simultaneously with the physiological recordings

(ISCAN, Woburn, MA).

Neurophysiology Experiments

After 500 ms of fixation, subjects were presented with an image (256 3 256

pixels) of an object for 150 ms, followed by a 650 ms gray screen, and then

a choice screen (Figure 1A). The images subtended 5� of visual angle. Subjects
performed a 5-alternative forced choice task, categorizing the images into one

of five categories (animals, chairs, human faces, fruits, or vehicles) by pressing

corresponding buttons on a gamepad (Logitech, Morges, Switzerland). No

correct/incorrect feedback was provided. Stimuli consisted of contrast-

normalized grayscale images of 25 objects, 5 objects in each of the aforemen-

tioned 5 categories. In�30%of the trials, the imageswere presented unaltered

(the Whole condition). In 70% of the trials, the visual features were presented

through Gaussian bubbles of SD 14 pixels (the Partial condition, see example

in Figure 1B) (Gosselin and Schyns, 2001). The more bubbles, the more visibil-

ity. Each subject was first presented with 40 trials of whole objects, then 80

calibration trials of partial objects, where the number of bubbles was titrated

in a staircase procedure to set the task difficulty at �80% correct rate. The

number of bubbles was then kept constant throughout the rest of

the experiment. The average percentage of the object shown for each subject

is reported in Figure 1C. Unless otherwise noted (below), the positions of

the bubbles were randomly chosen in each trial. The trial order was

pseudorandomized.
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Six subjects performed a variant of the Main experiment with three key

differences. First, contrast was normalized between the Whole and Partial

conditions by presenting all objects in a phase-scrambled background (Fig-

ure 1B). Second, in 25% of the Partial condition trials, the spatial distribution

of the bubbles was fixed to a single seed (the Partial Fixed condition). Each

of the images in these trials was identical across repetitions. Third, because

experimental timewas limited, only objects from three categories (animals, hu-

man faces, and vehicles) were presented to collect enough trials in each

condition.

Data Analyses

Electrode Localization

Electrodes were localized by coregistering the preoperativeMRI with the post-

operative computed tomography (CT) (Destrieux et al., 2010; Liu et al., 2009).

For each subject, the brain surface was reconstructed from the MRI and then

assigned to 1 of 75 regions by Freesurfer. Each surface was also coregistered

to a common brain for group analysis of electrode locations. The location of

electrodes selective in both Whole and Partial conditions is shown in Table

S2. In Figure 6A, we computed the Spearman’s correlation coefficient

between the latency differences (Partial-Whole) and distance along the poste-

rior-anterior axis of the temporal lobe. In Figure 4F, we partitioned the elec-

trodes into three groups: fusiform gyrus, inferior occipital gyrus, and other.

We used the Fisher’s exact test to assess whether the proportion of electrodes

selective in both conditions is greater in the fusiform gyrus versus other, and in

inferior occipital gyrus versus other.

Visual Response Selectivity

All analyses in this manuscript used correct trials only. Noise artifacts were

removed by omitting trials where the IFP amplitude exceeded five times the

SD. The responses from 50 to 500 ms after stimulus onset were used in the

analyses.

ANOVA. We performed a nonparametric one-way ANOVA of the IFP

responses. For each time bin, the F-statistic (ratio of variance across object

categories to variance within object categories) was computed on the IFP

response (Keeping, 1995). Electrodes were denoted selective in this test if

the F-statistic crossed a threshold (described below) for 25 consecutive milli-

seconds (e.g., Figure 2D). The latency was defined as the first time of this

threshold crossing. The number of trials in the two conditions (Whole and

Partial) was equalized by random subsampling; 100 subsamples were used

to compute the average F-statistic. A value of 1 in the F-statistic indicates

no selectivity (variance across categories comparable to variance within cate-

gories), whereas values above 1 indicate increased selectivity.

Decoding. We used a machine learning approach to determine if and when

sufficient information became available to decode visual information from the

IFP responses in single trials (Bishop, 1995). For each time point t, features

were extracted from each electrode by using principal component analysis

(PCA) on the IFP response from (50 t) ms, and then keeping those components

that explained 95%of the variance. The features set also included the IFP range

(max–min), time to maximum IFP, and time to minimum IFP. A multiclass linear

discriminant classifier with diagonal covariancematrix was used to either cate-

gorize or identify the objects. Ten-fold stratified cross-validation was used to

separate the training sets from the test sets. The proportion of trials where

the classifierwas correct in the test set is denoted the ‘‘decoding performance’’

throughout the text. In the Main experiment, a decoding performance of 20%

(1/5) indicates chance for categorization, and 4% (1/25) indicates chance for

identification. The number of trials in the Whole and Partial conditions was

equalized by subsampling; we computed the average decoding performance

across 100 different subsamples. An electrode was denoted selective if the

decoding performance crossed a threshold (described below) at any time point

t, and the latency was defined as the first time of this threshold crossing.

Pseudopopulation. Decoding performance was also computed from an

ensemble of electrodes across subjects by constructing a pseudopopulation,

and then performing the same analyses described above (Figure 6C).

The pseudopopulation pooled responses across subjects (Hung et al., 2005;

Mehring et al., 2003; Pasupathy and Connor, 2002). The features for each trial

in this pseudopopulation were generated by first randomly sampling exem-

plar-matched trials without replacement for each member of the ensemble,

and then concatenating the corresponding features. The pseudopopulation
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size was set by the minimum data set size of the subject, which in our data

was 100 trials (4 from each exemplar). Because of the reduced data set size,

4-fold cross-validation was used.

d-Prime. We compared the above selectivity metrics against d0 (Green and

Swets, 1966). The value of d0 was computed for each electrode by comparing

the best category against the worst category, as defined by the average IFP

amplitude. d0 measures the separation between the two groups normalized

by their SD. The latency of selectivity for d0 was measured using the same

approach as the ANOVA (Figures S4A and S4B).

Significance Thresholds. The significance thresholds for ANOVA, decod-

ing, and d0 were determined by randomly shuffling the category labels

10,000 times and using the value of the 99.9th percentile (ANOVA: F = 5.7;

decoding: 23%, d0 = 0.7). This represents a false discovery rate of q =

0.001 for each individual test. As discussed in the text, we further restricted

the set of electrodes by considering the conjunction of the ANOVA and

decoding tests. We evaluated this threshold by performing an additional

1,000 shuffles and measuring the number of selective electrodes that passed

the same selectivity criteria by chance. In Table 1, we present the number of

electrodes that passed each significance test and the number of electrodes

that passed the same tests after randomly shuffling the object labels. The

conclusions of this study did not change when using a less strict criterion

of q = 0.05 (median latency difference for ANOVA: 123 ms, n = 45 electrodes

selective in both conditions, Figure S6).

Latency Measures

We considered several different metrics to quantify the selectivity latency (i.e.,

the first time point when selective responses could be distinguished) and the

visual response latency (i.e., the time point when a visual response occurred).

These measures are summarized in Figures 6D and S6.

Selectivity Latency

The selectivity latency represented the first time point when different stimuli

could be discriminated and was defined above for the ANOVA, decoding,

and d0 analyses.
Response Latency

Latency of the visual response was computed at a per-trial level by deter-

mining the time, in each trial, when the IFP amplitude exceeded 3 SDs above

the baseline activity. Only trials corresponding to the preferred category were

used in the analysis. To test the multimodality of the distribution of response

latencies, we used Hartigan’s dip test. In 27 of the 30 electrodes, the unimo-

dality null hypothesis could not be rejected (p > 0.05).

Frequency Band Analyses

Power in the gamma frequency band (70–100 Hz) was evaluated by applying a

fifth-order Butterworth filter bandpass and computing the magnitude of the

analytical representation of the signal obtained with the Hilbert transform.

The same analyses (ANOVA, decoding, per-trial latency) were applied to the

responses from all electrodes in different frequency bands.

Bubble Overlap Analyses

For each pair of partial object trials, the percent of overlap was computed by

dividing the number of pixels that were revealed in both trials by the area of the

object (Figure 4D). Because a low degree of object overlap would be expected

in trials with weak physiological responses, we focused on the most robust

responses for these analyses by considering those trials when the IFP ampli-

tude was greater than the 90th percentile of the distribution of IFP amplitudes

of all the nonpreferred category trials.
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